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explicit and local. Its novel features include the exact evalu-
ation of a major contribution to an approximation to theThe matrix elements of the exponential of a finite difference real-

ization of the one-dimensional Laplacian are found exactly. This evolution operator (Eq. (16)) and a first-order approxima-
matrix is used to formulate an efficient algorithm for the numerical tion to the exponential of the commutator of the kinetic
solution to the time-dependent quantum mechanical scattering of energy operator with the potential energy operator. The
a single particle from a time-independent potential in one-space

algorithm based on these results yields efficient approxi-and one-time dimension. The method generalizes to higher spatial
mate finite difference solutions to the Schrödinger equa-dimensions, as well as to multiparticle problems. Q 1997 Academic

Press tion that are accurate to at least O(["dt/ma2]3), where dt
is the time step and a is the uniform lattice spacing. This
algorithm will provide efficient approximate solutions of

1. INTRODUCTION increased accuracy for some initial value problems.

The problem of time-dependent quantum mechanical
II. METHODscattering of a spinless particle of mass m from a time-

independent potential V in one-space and one-time dimen-
The initial value problem is governed by the Schrö-sion has a long and remarkable history. It is impossible to

dinger equationdo justice to the many workers who have contributed to this
topic in the opening paragraph of a short letter. However, it
is well known that some of the most accurate and stable
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=2 C (x, t) 1 VC (x, t) (1)

numerical techniques that provide time-dependent solu-
tions to the scattering problem are based on unitary algo-
rithms that often carry a large computational overhead. or
For example, Cayley’s fractional form of the evolution
operator e2(i/")Ht poses efficiency problems because of
the inverse operator that appears in the approximation ­tC 5 F i"

2m
=2 2

iV
"
GC, (2)

e2(i/")Ht 5 (1 2 (i/2") Ht)(1 1 (i/2") Ht)21 1 ? ? ? [1].
Fourier transform methods in which the kinetic energy
operator is diagonal [2] depend on nonlocal transforms subject to prescribed initial data. We consider only time-
that are computationally expensive to perform. Alternat- independent potentials V so that [­t, V] 5 0 and
ing direction implicit techniques are often formulated in
terms of tridiagonal systems that must be solved for each

C(x, t 1 dt) 5 edt­tC(x, t) 5 e(i"dt/2m)=
2

2 iVdt/"C(x, t). (3)new time step [3]. Several other propagation schemes that
are often employed, including the nonunitary Chebyshev
expansion scheme are reviewed in [4]. Each, of course, We may expand the evolution operator as
has its advantages and disadvantages depending in large
measure on the particular initial value problem under

e(i"dt/2m)=
2
2iVdt/" 5 ? ? ? eA3dt3

eA2dt2
e2iV/" e(i"/2m)=

2
, (4)study.

Other more efficient unitary algorithms have been ap-
plied that are explicit and local [5, 6], but do not always where the A2, A3, ... are anti-Hermitian operators. For

example, A2 may be calculated by differentiating Eq. (4)achieve the same accuracy as the previous approaches. The
algorithm that we shall discuss in this paper is also both twice with respect to dt and then setting dt 5 0. This yields
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Using the recursion relations 2Z9v 5 Zv21 2 Zv11 of the
A2 5

1
4m

[=2, V] 5
1

4m
(V0 1 2V9­x). (5) Bessel functions [7, 8], one readily finds that the solution

to Eq. (12) subject to the given initial conditions is
Consider now the scattering problem formulated on a

discrete spatial lattice with a uniform lattice spacing a. Let f (n9)
n (l) 5 in2n9e2ilJn2n9(l). (15)

integers n, n9, ... denote lattice site indices (2y , n, n9 ...
, y). C now carries an implicit lattice site index, and we To obtain e(il/2)T we observe that the nth component of
understand that C(x, t) } Cn(t), where x 5 na. We employ Eq. (13) is f (n9)

n (l) 5 in2n9e2ilJn2n9(l) 5 Sn0 [e(il/2)T]nn0
a standard finite difference realization of the Laplacian f (n9)

n0 (0) 5 Sn0[e(il/2)T]nn0dn0n9 5 [e(il/2)T]nn9, which we re-
=2 5 a22T 1 O(a2) in one dimension in which the matrix cord as
elements of T are given by

[e(il/2)T]nn9 5 in2n9e2ilJn2n9(l). (16)
Tnn9 5 dnn911 2 2dnn9 1 dnn921. (6)

Since U is diagonal we find thatEquation (3) then gives

[e(il/2)T2ilU]nn9C(t 1 dt) 5 edt­tC(t) 5 e(il/2)T2ilUC(t), (7)

5 [? ? ? e2ilUe(il/2)T]nn9 P in2n9e2il(11Un)Jn2n9(l), (17)where we have put

so that to O(["dt/ma2]2),l 5 "dt/ma2 (8)

and Cn(t 1 dt)

U 5 (ma2/"2)V. (9)
5 e2il(11Un) Oy

n952y

in2n9 Jn2n9(l)Cn9(t)

We again expand the evolution operator as
5 e2il(11Un) Oy

n952y

in9 Jn9(l)Cn2n9(t)
(18)

e(il/2)T2ilU 5 ? ? ? el3B3el2B2e2ilUe(il/2)T, (10)

5 e2il(11Un) FJ0(l)Cn(t) 1 Oy
n951

in9Jn9(l)[Cn2n9(t) 1 Cn1n9(t)]G.
where the anti-Hermitian operators B2, B3, ... may be de-
termined as accuracy dictates. B2 is calculated below. It is
important to note that, to each order, the decomposition The Jn(l) are calculated only once at the beginning of the
of the evolution operator is in terms of unitary operators, procedure. If one examines the asymptotic expansion of
so that the norm of C is preserved as the dynamics unfolds. Jn then one sees that it decreases exponentially [7, 8] for
A numerical algorithm based on this expansion will be large un/lu. Only a few need be included in a numerical
unconditionally stable. approximation.

e(il/2)T may be calculated exactly. To this end we define B2 may be calculated by differentiating Eq. (10) twice
an n9-parameterized family of special functions f (n9)

n by with respect to l and then setting l 5 0. This yields

B2 5 Af[T, U], (19)­

­l
f (n9) 5

i
2

Tf (n9), (11)

which is a real antisymmetric matrix and, as stated above,i.e.,
is the generator of a unitary transformation. The matrix
elements of B2 are easily found to be­

­l
f (n9)

n 5
i
2

( f (n9)
n11 2 2 f (n9)

n 1 f (n9)
n21), (12)

B2nn9 5 Af(Un11 2 Un)(dnn921 2 dnn911). (20)
subject to the initial conditions f (n9)

n (0) 5 dnn9. The solution
to Eq. (11) is We shall represent B2 as the sum B2 5 Ba

2 1 Bb
2 of two

(noncommuting) block-diagonal antisymmetric matricesf (n9)(l) 5 e(il/2)T f (n9)(0), (13)
Ba

2 and Bb
2 . We shall choose Ba

2 and Bb
2 so that each can

individually be exponentiated to a finite rotation matrixwhile Eq. (12) may be written as
that possesses a concise closed form. Let us consider the
evalution of the unitary approximation el2B2 5 [1 1 O(["dt/2

­

­l
eil f (n9)

n 5 i [eil f (n9)
n21 1 eil f (n9)

n11]. (14)
ma2]4)] el2Bb

2el2Ba
2 under these conditions.
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We express Ba
2 as a direct sum, Cn21 cos (un21) 1 Cn sin (un21) and Cn R 2Cn21 sin (un21)

1 Cn cos (un21), unless n 5 2N. If n 5 2N then Cn is
invariant under the action of Bb

2 .Ba
2 5 %

n
0Sn, (21)

III. CONCLUSION
where %0n denotes a sum over every other lattice site (so
that n has definite parity), In order to generalize this method to two spatial dimen-

sions we replace Cn with Cnxny
and the kinetic energy

operator Tnn9 with Tnxn9
x
dnyn9

y
1 Tnyn9

y
dnxn9

x
, if the latticeSn 5

1
4

(Un11 2 Un)s (22)
spacing is a for both axes. Otherwise lTnn9 R
lxTnxn9

x
dnyn9

y
1 lyTnyn9

y
dnxn9

x
, where lx 5 ("/ma2

x) dt and
and ly 5 ("/ma2

y) dt. The potential energy operator is still
diagonal, lUn R (dt/")Vnxny

. The evolution operator
e2(i/")Ht applied to the state vector at time t yields

s 5 S 0 1

21 0
D. (23)

Cnxny
(t 1 dt) 5 e2i(lx1ly1dt/"Vn

x
n

y
) Oy

n9
x52y

Oy
n9

y52y

inx2n9xiny2n9y

Also

Jnx2n9
x
(lx) Jny2n9

y
(ly)Cn9

xn9
y
(t), (27)

Bb
2 5 XLAT 8 F%

n
0SnG. (24)

to O(["dt/ma2]2). Increased accuracy may be obtained by
including the B2 dependent terms. The Jn(l) are calculated

Here n in Eq. (24) has the opposite parity to n in Eq. (21). only once. They fall off exponentially for large un/lu. In
The translation operator XLAT shifts the elements of practice only a few of the Jn(l) need be retained. While
Bb

2 relative to Ba
2 down one row and right one column.

l is arbitrary, its value should be tuned to an optimal value
Each of the two block-diagonal antisymmetric matrices once the lattice spacing and potential energy are given.
Ba

2 and Bb
2 generates a family of rotations connecting dis- For example, if one picks l to be the first zero of J0 then

joint ordered pairs of adjacent nodes (Cn, Cn11), where one should expect to have to retain more terms in the sum
each Cn is included only once for Ba

2 and only once for of Bessel functions to achieve a desired accuracy.
Bb

2 . At a lattice site n, Cn is paired with Cn21 for one of The two particle problem in one spatial dimension fol-
these rotations, and with Cn11 for the other. lows directly from the single particle theory in two spatial

To clarify this construction let us consider a concrete dimensions when the two particles are distinguishable. Let
example. We truncate the lattice to 2N 1 1 sites, N . 0, the masses of the two particles be m1 and m2. We identify
so that 2N # n, n9 # N. Then

lx with ("/m1a2) dt and ly with ("/m2a2) dt, and proceed
in the obvious manner. Many higher order (in particleBa

2 5 S2N % S2N12 % ? ? ? % SN22 % 0131 (25)
number and/or spatial dimension) problems may be han-
dled by a straightforward extension of these ideas.

and
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